Показать сообщение отдельно
Старый 25.05.2014, 21:45   #183
ARTA64
Татьяна. Свободный художник
 
Аватар для ARTA64
 
Регистрация: 19.04.2012
Адрес: Москва
Сообщений: 6,458
Благодарностей: 1,706
По умолчанию электролиты - кислоты и основания

Кислоты, химические соединения, содержащие водород, способный замещаться металлом с образованием солей, и диссоциирующие при растворении в воде с образованием ионов Н+ (протонов) или, точнее, ионов гидроксония H3O+. По современным представлениям, к кислотам относятся также некоторые соединения, не содержащие водорода (подробнее см. Кислоты и основания).

ИСЛОТЫ НЕОРГАНИЧЕСКИЕ, неорг. в-ва, молекулы к-рых при электролитич. диссоциации в водной среде отщепляют протоны, в результате чего в р-ре образуются гидроксоний-катионы Н3О+ и анионы кислотных остатков А-: НА+Н2ОDН3О++А (1) Исключение составляет борная к-та В(ОН)3, к-рая акцептирует ионы ОН-, в результате чего в водном р-ре создается избыток гидроксоний-катионов: В(ОН)3+2Н2ОD[В(ОН)4]-+Н3О+ Число отщепляемых от молекулы к-ты протонов наз. основностью к-ты. Теории к-т и оснований (Брёнстеда, Льюиса и др.) кроме указанных выше относят к к-там мн. иные соед. (см. Кислоты и основания). Общее св-во к-т - способность реагировать с основаниями и основными оксидами с образованием солей, напр.: HNO3+NaOH:NaNO3+Н2О 2НСl+CaO:CaCl2+H2O Кислоты неорганические подразделяют на кислородсодержащие (оксокислоты) общей ф-лы НnЭОm, где Э - кислотообразующий элемент, и бескислородные НnХ, где X - галоген, халькоген или неорг. бескислородный радикал (CN, NCS, N3 и др.). Оксокислоты характерны для мн. хим. элементов, особенно для элементов в высоких ( +3 и выше) степенях окисления. Атомы Н в оксокислотах обычно связаны с кислородом. Если в оксокислоте имеются атомы Н, не связанные с кислородом (напр., два атома Н, образующие связи Р—Н в Н3РО2), то они не отщепляются в водном р-ре с образованием Н3О+ и не принимают участия в р-ции к-т с основаниями. Нек-рые к-ты известны в двух таутомерных формах, различающихся положением атома Н, напр.:

Молекулы мн. к-т содержат более одного атома кислотообразующего элемента Э. Очень многочисленны изополикислоты, содержащие атомы Э, связанные через атом кислорода, причем фрагменты —Э—О—Э— могут образовать как открытые цепи (напр., в Н4Р2О7), так и циклич. структуры [напр., в (HPO3)n]. В нек-рых к-тах содержатся цепи из одинаковых атомов, напр., цепи —S—S— в политионовых к-тах Н2SnО6 и сульфанах Н2Sn. Известны гетерополикислоты (см. Гетерополисоединения), имеющие фрагменты —Э—О—Э'—, где Э и Э' - атомы двух разных элементов, напр.: H4[SiW12O40].14H2O. Существует множество комплексных к-т, напр.: H2[SiF6], H[AuCl4], H4[Fe(CN)6]. К-ты, аналогичные оксокислотам, но содержащие вместо атома (атомов) кислорода серу, наз. тиокислотами, напр. H2S2O3, H3AsS3. Пероксокислоты, напр. H2S2O8, имеют пероксогруппы —О—О— (см. Пероксидные соединения неорганические). Константу равновесия р-ции (1) называют константой кислотности Ка. Многоосновные к-ты диссоциируют ступенчато, каждой ступени отвечает своя Ка, причем всегда Ka(1)>>Kа(2)...; ориентировочно каждая послед. Ка меньше предыдущей на 5 порядков. По значению pK1=-lgKa(1) кислоты неорганические подразделяют на очень слабые, слабые, средней силы, сильные, очень сильные (см. Кислоты и основания). Согласно правилу Полинга, для очень слабых оксокислот НnЭОm разность m-n=0, для слабых, сильных и очень сильных эта разность составляет соотв. 1, 2 и 3. Данная закономерность обусловлена сдвигом электронной плотности от связи Н—О к связям Э=О (содержащим атом О с большим значением электроотрицательности) и делокализацией электронной плотности в анионе. Для характеристики кислотности в-в в неводных средах используют ф-цию кислотности Гаммета H0 (см. Корреляционные соотношения). Известны жидкости, для к-рых H0 более отрицательна, чем для конц. водных р-ров очень сильных к-т, таких, как HNO3, H2SO4. Эти жидкости наз. сверхкислотами. Примеры: 100%-ная H2SO4 (H0=-12), безводная фторсульфоновая к-та HSO3F (H0=-15), смесь HF и SbF5 (H0=-17), 7%-ный р-р SbF5 в HSO3F (H0=-19,4). Эквимолярную смесь HSO3F и SbF5 называют "магической к-той". Сверхкислотность обусловлена исключительной слабостью взаимод. с протоном соответствующих анионов (HSO-4, SbF-6 и др.). В среде сверхкислот протонируются в-ва, обычно не проявляющие основных св-в, в частности углеводороды. Это явление используют на практике, преим. в орг. синтезе (алкилирование по Фриделю - Крафтсу, гидрирование нефти и др.). Мн. оксокислоты (HNO3, HMnO4, Н2Сr2О7, НСlO и др.) - сильные окислители. окислит. активность этих к-т в водном р-ре выражена сильнее, чем у их солей. Все пероксокислоты - сильные окислители. Кислоты неорганические всегда менее термически устойчивы, чем их соли, образованные активными металлами (Na, К и др.). Нек-рые кислоты неорганические (Н2СО3, H2SO3, НСlO и др.) невозможно выделить в виде индивидуальных соед., эти кислоты неорганические существуют только в р-ре. Общие методы получения кислот неорганических: взаимод. оксидов (ангидридов) с водой, напр.: Р2О5+Н2О:Н3РО4 вытеснение более летучей кислоты неорганической из ее соли менее летучей кислотой неорганической, напр.:

действие H2SO4 на р-р бариевой соли данной кислоты неорганической, напр.: Ва(Н2РО2)2+H2SO4:BaSO4+2Н3РО2 гидролиз галогенидов или солей, напр.: Рl3+ЗН2O:Н3РO3+3HI Аl2Sе3+6Н2O:2Аl(ОН)3+3H2Se замена катионов растворенных солей на Н с помощью катионита. Существует также множество др. методов получения кислот неорганических. Кислоты неорганические применяют в пром-сти и в научных исследованиях. В больших кол-вах производят серную кислоту, азотную кислоту, фосфорную кислоту, соляную кислоту и др. === Исп. литература для статьи «КИСЛОТЫ НЕОРГАНИЧЕСКИЕ»: Некрасов Б. В., Основы обшей химии, 3 изд., т. 1-2, М., 1973; Кемпбел Дж., Современная общая химия, пер. с англ., т. 1-3, М., 1975; Белл Р., Протон в химии, пер. с англ., М., 1977; Хьюи Д., Неорганическая химия, пер. с англ., М., 1987. С. И. Дракин. Страница «КИСЛОТЫ НЕОРГАНИЧЕСКИЕ» подготовлена по материалам химической энциклопедии.


ОСНОВАНИЯ ОРГАНИЧЕСКИЕ, орг. соед., используемые на практике в качестве акцепторов протонов. К ним относят нейтр. основания (третичные амины, амидины) и анионные основания [алкоголяты и алтсил(или арил)амиды щелочных металлов, металлоорг. соед.]. К специфич. типам оснований органических относят также ангидрооснования (см. Кислоты и основания)и псевдооснования. Основания органические применяют прежде всего для ионизации соед. по связям О—Н, N—Н, С—Н. Ионизирующая способность оснований органических характеризуется константой ионизации сопряженной к-ты рКа (см. табл.). Важное преимущество их перед щелочами - р-римость в орг. р-рителях, что позволяет применять основания органические в неводных средах.

ГИДРОКСИДЫ, неорг. соед. металлов общей ф-лы М(ОН)n, где и-степень окисления металла М. Являются основаниями или амфотерными соединениями. Гидроксиды щелочных, щел.-зем. металлов и Тl(I) наз. щелочами, Кристаллич. решетки гидроксидов щелочных и щел.-зем. металлов содержат ионы ОН-, к-рые легко обнаруживаются по широкой полосе в ИК-спектре при 3600 см-1. Щелочи при растворении в воде подвергаются электролитич. диссоциации с образованием гидратированных ионов ОН " и аквакатионов металла. В конц. неводных р-рах гидроксидов щелочных металлов возможно образование ионных пар, напр. (К + *ОН-), c включением в их состав молекул р-рителя. Гидроксиды щелочных металлов хорошо раств. в воде, гидроксиды остальных металлов мало растворимы и часто выделяются из водного р-ра в виде гелей переменного состава, содержащих молекулы воды. К амфотерным гидроксидам относят Ве(ОН)2, Zn(OH)2, A1(OH)3, Ga(OH)3, Sn(OH)2, Pb(OH)2, СrO(ОН) и нек-рые др. При взаимод. с к-тами они образуют соли, с сильными основаниями -гидроксокомплексы, Напр., гидроксид цинка может реагировать как с к-той, так и с основанием:

Гидроксиды многих металлов, особенно элементов FVб гр. периодич. системы, склонны к поликонденсации в результате процесса оляции-образования мостиковых групп ОН (см. Гидроксокомплексы). При этом гидроксиды прсвращ. в сложные нестехиометрич. соед.-многоядерные гидроксоаквакомплексы, содержащие такие, напр., фрагменты:

Образованию этих соед. способствует повышение т-ры, концентрации р-ра и водородного показателя (рН). При старении осадка многоядерных гидроксоаквакомплексов гидроксогруппы необратимо превращ. в оксогруппы (процесс оксоляцииХ напр.:

Многие гидроксиды и их водные р-ры поглощают СО2 из воздуха с образованием карбонатов, с к-тами дают соли. При нагр. гидроксидов щелочных металлов, кроме LiOH, плавятся, а остальные, в т.ч. и LiOH, разлагаются на оксид металла и воду, напр.: Сu(ОН)2 -> СuО + Н2О. Гидроксиды Cu(I), Ag(I), Au(I) разлагаются на воду и оксид в процессе их образования. Гидроксиды щелочных металлов получают: электролизом водных р-ров солей, чаще всего хлоридов; методом ионного обмена с использованием анионитов в ОН-форме; иногда по обменным р-циям, напр.: Li2SO4 + Ва(ОН)2 -> 2L1OH + BaSO4. Гидроксиды остальных металлов получают в осн. по обменным р-циям. В отдельных случаях гидроксиды щел.-зем. металлов синтезируют взаимод. их оксидов с водой, напр.: СаО + Н2О -> Са(ОН)2. Гидроксиды встречаются в природе в в.иде минералов, напр. ги-драргиллита А1(ОН)3, брусита Mg(OH)2. Среди орг. в-в также известны гидроксиды, напр. тетраалкиламмо-нийгидроксиды (NR4)OH, где R = CH3, C2H5; они хорошо раств. в воде относ. к классу оснований. Б. Д. Степин.
__________________
Я не лучше других, но и не хуже.

Татьяна.
Можно на "ты".
ARTA64 вне форума   Ответить с цитированием
Поблагодарили: 1